Chemical mimicry of viral capsid self-assembly.

نویسندگان

  • Arthur J Olson
  • Yunfeng H E Hu
  • Ehud Keinan
چکیده

Stable structures of icosahedral symmetry can serve numerous functional roles, including chemical microencapsulation and delivery of drugs and biomolecules, epitope presentation to allow for an efficient immunization process, synthesis of nanoparticles of uniform size, observation of encapsulated reactive intermediates, formation of structural elements for supramolecular constructs, and molecular computing. By examining physical models of spherical virus assembly we have arrived at a general synthetic strategy for producing chemical capsids at size scales between fullerenes and spherical viruses. Such capsids can be formed by self-assembly from a class of molecules developed from a symmetric pentagonal core. By designing chemical complementarity into the five interface edges of the molecule, we can produce self-assembling stable structures of icosahedral symmetry. We considered three different binding mechanisms: hydrogen bonding, metal binding, and formation of disulfide bonds. These structures can be designed to assemble and disassemble under controlled environmental conditions. We have conducted molecular dynamics simulation on a class of corannulene-based molecules to demonstrate the characteristics of self-assembly and to aid in the design of the molecular subunits. The edge complementarities can be of diverse structure, and they need not reflect the fivefold symmetry of the molecular core. Thus, self-assembling capsids formed from coded subunits can serve as addressable nanocontainers or custom-made structural elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Chemical Chaperones on the Assembly and Stability of HIV-1 Capsid Protein

Chemical chaperones are small organic molecules which accumulate in a broad range of organisms in various tissues under different stress conditions and assist in the maintenance of a correct proteostasis under denaturating environments. The effect of chemical chaperones on protein folding and aggregation has been extensively studied and is generally considered to be mediated through non-specifi...

متن کامل

Mechanisms of kinetic trapping in self-assembly and phase transformation.

In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately capt...

متن کامل

Assembly of viruses and the pseudo-law of mass action.

The self-assembly of the protein shell ("capsid") of a virus appears to obey the law of mass action (LMA) despite the fact that viral assembly is a nonequilibrium process. In this paper we examine a model for capsid assembly, the "assembly line model," that can be analyzed analytically. We show that, in this model, efficient viral assembly from a supersaturated solution is characterized by a sh...

متن کامل

Modeling Viral Capsid Assembly.

I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. To...

متن کامل

Virus assembly occurs following a pH- or Ca-triggered switch in the thermodynamic attraction between structural protein capsomeres

Viral self-assembly is of tremendous virological and biomedical importance. Although theoretical and crystallographic considerations suggest that controlled conformational change is a fundamental regulatory mechanism in viral assembly, direct proof that switching alters the thermodynamic attraction of self-assembling components has not been provided. Using the VP1 protein of polyomavirus, we re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 52  شماره 

صفحات  -

تاریخ انتشار 2007